3.2039 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{\sqrt {d+e x}} \, dx\)

Optimal. Leaf size=109 \[ \frac {4 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{35 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{7 c d (d+e x)^{3/2}} \]

[Out]

4/35*(-a*e^2+c*d^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^2/d^2/(e*x+d)^(5/2)+2/7*(a*d*e+(a*e^2+c*d^2)*x+c
*d*e*x^2)^(5/2)/c/d/(e*x+d)^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 109, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {656, 648} \[ \frac {4 \left (c d^2-a e^2\right ) \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{35 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{7 c d (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/Sqrt[d + e*x],x]

[Out]

(4*(c*d^2 - a*e^2)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(35*c^2*d^2*(d + e*x)^(5/2)) + (2*(a*d*e + (
c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(7*c*d*(d + e*x)^(3/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 656

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[(Simplify[m + p]*(2*c*d - b*e))/(c*(m + 2*p + 1)), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{\sqrt {d+e x}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{7 c d (d+e x)^{3/2}}+\frac {\left (2 \left (d^2-\frac {a e^2}{c}\right )\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{7 d}\\ &=\frac {4 \left (c d^2-a e^2\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{35 c^2 d^2 (d+e x)^{5/2}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{7 c d (d+e x)^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 55, normalized size = 0.50 \[ \frac {2 ((d+e x) (a e+c d x))^{5/2} \left (c d (7 d+5 e x)-2 a e^2\right )}{35 c^2 d^2 (d+e x)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/Sqrt[d + e*x],x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2)*(-2*a*e^2 + c*d*(7*d + 5*e*x)))/(35*c^2*d^2*(d + e*x)^(5/2))

________________________________________________________________________________________

fricas [A]  time = 0.98, size = 135, normalized size = 1.24 \[ \frac {2 \, {\left (5 \, c^{3} d^{3} e x^{3} + 7 \, a^{2} c d^{2} e^{2} - 2 \, a^{3} e^{4} + {\left (7 \, c^{3} d^{4} + 8 \, a c^{2} d^{2} e^{2}\right )} x^{2} + {\left (14 \, a c^{2} d^{3} e + a^{2} c d e^{3}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{35 \, {\left (c^{2} d^{2} e x + c^{2} d^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

2/35*(5*c^3*d^3*e*x^3 + 7*a^2*c*d^2*e^2 - 2*a^3*e^4 + (7*c^3*d^4 + 8*a*c^2*d^2*e^2)*x^2 + (14*a*c^2*d^3*e + a^
2*c*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^2*d^2*e*x + c^2*d^3)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{\sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/sqrt(e*x + d), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 69, normalized size = 0.63 \[ -\frac {2 \left (c d x +a e \right ) \left (-5 c d e x +2 a \,e^{2}-7 c \,d^{2}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}{35 \left (e x +d \right )^{\frac {3}{2}} c^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(3/2)/(e*x+d)^(1/2),x)

[Out]

-2/35*(c*d*x+a*e)*(-5*c*d*e*x+2*a*e^2-7*c*d^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)/c^2/d^2/(e*x+d)^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.32, size = 98, normalized size = 0.90 \[ \frac {2 \, {\left (5 \, c^{3} d^{3} e x^{3} + 7 \, a^{2} c d^{2} e^{2} - 2 \, a^{3} e^{4} + {\left (7 \, c^{3} d^{4} + 8 \, a c^{2} d^{2} e^{2}\right )} x^{2} + {\left (14 \, a c^{2} d^{3} e + a^{2} c d e^{3}\right )} x\right )} \sqrt {c d x + a e}}{35 \, c^{2} d^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/35*(5*c^3*d^3*e*x^3 + 7*a^2*c*d^2*e^2 - 2*a^3*e^4 + (7*c^3*d^4 + 8*a*c^2*d^2*e^2)*x^2 + (14*a*c^2*d^3*e + a^
2*c*d*e^3)*x)*sqrt(c*d*x + a*e)/(c^2*d^2)

________________________________________________________________________________________

mupad [B]  time = 0.94, size = 128, normalized size = 1.17 \[ \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {x^2\,\left (14\,c^3\,d^4+16\,a\,c^2\,d^2\,e^2\right )}{35\,c^2\,d^2}-\frac {4\,a^3\,e^4-14\,a^2\,c\,d^2\,e^2}{35\,c^2\,d^2}+\frac {2\,c\,d\,e\,x^3}{7}+\frac {2\,a\,e\,x\,\left (14\,c\,d^2+a\,e^2\right )}{35\,c\,d}\right )}{\sqrt {d+e\,x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(1/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((x^2*(14*c^3*d^4 + 16*a*c^2*d^2*e^2))/(35*c^2*d^2) - (4*a^3*e^
4 - 14*a^2*c*d^2*e^2)/(35*c^2*d^2) + (2*c*d*e*x^3)/7 + (2*a*e*x*(a*e^2 + 14*c*d^2))/(35*c*d)))/(d + e*x)^(1/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\sqrt {d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/sqrt(d + e*x), x)

________________________________________________________________________________________